EE492
Final Report
By Dec1702B

Abstract

ABOUT US We are a senior design team formed in the term Spring 2017. Our team is composed by four members: - Team Leader: Robert Cohoon - Key Concept Holder: Abdelmagieed Ibrahim - Web Master: Jinan Li - Communication Leader: Chang Sun

We have been working over one year on our senior design project and got close cooperation through our team work.

The team leader, Robert mainly in charge of controlling the timeline of our whole project and setting mission tests for our weekly activities.

The key concept holder, Abdelmagieed, mainly take charge in the whole technical control on our whole project, including the critical thinking for every content under our project.

The web master, Jinan, mainly responsible for our web page construction and a part of contents under our project, assisting the key concept holder on expertise of our design project.

The communication leader, Chang, mainly take in charge of struggling the time arrangement of every group meeting, meeting with clients and mentors, as well as writing meeting records and documents for the senior design project.

ABOUT THE PROJECT

Our senior design project is on power system. We are asked by the company Muscatine Power \& Water (MPW), our client, to give a diagnose to an old transmission line built by them in 1960s. The transmission line is numbered as Transmission Line 98, which is located in the city Muscatine, Iowa. Hence our senior design project is defined as: New construction or reconductoring the Transmission Line 98?

In this project, we first have to determine whether to re-conductor or re-build the transmission line. If re-building the transmission line, we need to figure out all the components we needed for the new Line 98 and finally define the new route for Line 98 .

TABLE OF CONTENTS

1. INTRODUCTION 5
1.1 PROJECT STATEMENT 5
1.2 PURPOSE 5
1.3 GOALS 5
1.4 DELIVERABLES 5
1.5 ASSESSMENT OF PROPOSED METHODS 5
1.6 PROJECT REQUIREMENTS/SEPECIFICATIONS 6
1.6.1 FUNCTIONAL 6
1.6.2 NON-FUNCTIONAL 6
1.6.3 STANDARDS 6
1.7 CHALLENGES 6
1.8 TIMELINES 6
1.8.1 FIRST SEMESTER 6
1.8.2 SECOND SEMESTER 7
2. PROJECT ANALYSSIS 7
2.1 MAP OF MASCATINE RELATION TO AMES 7
2.2 MAP OF TRANSMISSION LINE 98 8
3. CONDUCTOR ANALYSIS 9
3.1 PARAMETERS FOR DIFFERENT CONDUCTORS 9
3.1.1 AAAC 9
3.1.2 ACSR 9
3.1.3 ACSS 10
3.1.4 MOTION RESISTENT 10
3.1.5 ACSR/T-2 11
3.1.6 AAC/T-2 11
3.2 ANALYSIS OF CONDUCTORS 11
4. POLE ANALYSIS 13
4.1 POLE INTRODUCTION 13
4.2 POLE ANALYSIS 15
4.2.1 POLE CHOICE FOR ACSR 636 GROSBEAK 15
4.2.2 POLE CHOICE FOR ACSR 363 ORIOLE 16
5. SAMPLE CALCULATIONS 17
5.1 ROW WIDTH 17
5.2 CLEARANCE 18
5.3 UNDERBUILD 19
5.4 CALCULATION OF SAG 19
6. NEW ROUTE MAP 21
7. BUDGET 22
8. CONCLUSION 22
9. REFERENCE 22

1. INTRODUCTION

1.1 PROJECT STATEMENT

Analyze the systematic and economic viability for re-conductoring or new constructing of existing Transmission Line 98 to meet growing load demand of 89 kV .

1.2 PURPOSE

The current transmission line does not the growing load needs, if the line is not improved, some customers will not have power.

1.3 GOALS

1. Deliver a viable, robust, and complete design for each option.
2. Learn from being involved in a major design process.
3. Learn about and research power systems topics that we do not know, but need for the project.

1.4 DELIVERABLES

In order to meet the goals outlined in the introduction, the project give these specification:

- Create economic plan with a cost benefit analysis of four type of conductors (T2, ACSR, AAAC, and ACSS).
- Create sag/tension charts for each conductor.
- Construction plane. (next semester deliverable)
- List of equipment required for construction.
- Structure design with material list
- Propose reconductoring line 98 and have an engineering analysis plane done.
- Pole loading with different conductor.
- Budget report.

1.5 ASSESSMENT OF PROPOSED METHODS

\square Type of conductors:

- AAAC (All Aluminum-Alloy Conductor.)
- ACSR (Aluminum Conductor. Steel Reinforced)
- ACSS (Aluminum Conductor, Steel Supported.)
- Motion resistant conductor
- T-2
- ACSR/T-2(Aluminum Conductor Steel-Reinforced Concentric-Lay-Stranded Twisted Pair)
- AAC/T-2 (All-Aluminum 1350 Conductor Concentric-Lay-Stranded Twisted Pair)
$\square \quad$ Poles and materials
- Select new poles based on the type of conductor.
- Location of poles (not equal distance).
- Material and equipment required for installing poles and conductor.

1.6 PROJECT REQUIREMENTS/SEPECIFICATIONS

1.6.1 FUNCTIONAL

The technical requirement:

- The new line must at least supply 89 MVA.

1.6.2 NON-FUNCTIONAL

- Consideration of new locations for poles in case of changed surrounding environment.
- Different properties of pole.
- Economic analysis based on different conductor.
1.6.3 STANDARDS
- For types of conductors we are using National Electric Code (NEC).
- For types of poles we are using IEEE.

1.7 CHALLENGES

The biggest challenge is going to be choosing the proper type of poles and where to place them for each type of conductor. Another significant challenge will be based on the distribution line that shares the poles with the transmission line and whether or not there will need to be new poles for that line. There are some construction constraints with the pole locations that will need to be solved based on the terrain conditions in some areas.

1.8 TIMELINES

1.8.1 FIRST SEMSTER

1.8.2 SECOND SEMESTER

2. PROJECT ANALYSIS

2.1 MAP OF MASCATINE RELATION TO AMES

2.2 MAP OF TRANSMISSION LINE 98

Problem statement:

- Total Length: 1.7 Miles
- Follows creek near residential/commercial area
- Difficult to access for maintenance
- Insufficient ampacity for growing load

Reconductor or rebuild a section of transmission Line 98 (1.7 Miles) to create ease of access for maintenance and upgrade conductors to meet growing load demand.

3. CONDUTOR ANALYSIS

3.1 PARAMETERS FOR DIFFERENT CONDUCTORS

3.1.1 AAAC

Code Word	Size(KCMILL	Stran ding	Diameter (ins.)		Weight Per 1000 Feet (lbs.)	Rated Streng th (lbs.)	Resistance OHMS/1000ft.		Allowab le Ampacit y+ (Amps)	ACSR With Equivalent Diameter	
			Individual Wires	Complet e Cable			$\begin{gathered} \text { DC @ } \\ \mathbf{2 0}{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} \text { AC @ } \\ \mathbf{7 5}^{\circ} \mathrm{C} \end{array}$		Size	Stranding (Al/Stl)
Flint	740.8	37	. 1415	. 9900	690.8	24400	. 0272	. 0327	790	636.0	26/7

3.1.2 ACSR

Code Word	Size (AWG or KCMIL)	Stranding (Al/Stl)	Diameter (inches)			Weight Per 1000ft (lbs.)			Rated Strength (lbs.)	Resistance OHMS/1000ft.		Allowable Ampacity+ (Amps)	
			AL	Steel	Complete Cable	AL	Steel	Total		$\begin{gathered} \text { DC @ } \\ 20^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { AC @ } \\ 75^{\circ} \mathrm{C} \end{gathered}$		
Kingbird	636.0	18/1	. 1880.	. 1880	. 9400	597.2	93.6	690.8	15700	. 0270	. 0332	773	
Swift	636.0	36/1	. 1329.	. 1329	. 9300	596.0	47.0	643.0	13690	. 0271	. 0334	769	
Rook	636.0	24/7	. 1628.	. 1085	. 9770	600.0	219.2	819.2	22600	. 0268	. 0330	784	
Grosbeak	636.0	26/7	. 1564.	. 1216	. 9900	600.0	75.2	875.2	25200	. 0267	. 0328	789	
Scoter	636.0	30/7	. 1456.	. 1456	1.0190	600.0	395.0	995.0	30400	. 0256	. 0325	798	
Egret	636.0	30/19	. 1456 .	. 0874	1.0190	600.0	\|386.0		987.0	31500	. 0266	. 0326	798

ACSR 636 Grosbeak 26/7

Code Word	Size(KCMIL)	Stranding	Diameter (ins.)	Weight Per 1000 Feet (lbs.)	Rated Strength (lbs.)	Resistance OHMS/1000ft.		Ampacity at 75 C
						DC@20	AC@75	
Grosbeak	636	26/7	0.991	874	25200	0.0267	0.0328	789

3.1.3 ACSS

Code Word	$\left\lvert\, \begin{gathered} \text { Size } \\ (\text { KCMIL }) \end{gathered}\right.$	Stranding	Diameter (ins.)		WeightPer1000Feet(lbs.)		Resistance OHMS/1000ft.		$\underset{y}{\text { Ampacit } 200 \mathrm{C}}$
			Individual Wires	Complet e Cable			$\begin{gathered} \text { DC @ } \\ 20^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { AC @ } \\ 75^{\circ} \mathrm{C} \end{gathered}$	
Partridge	266.8	26/7	0.2363	0.642	366.8	8880	0.0619	0.0761	812
Junco	266.8	30/7	0.2829	0.660	417.4	11700	0.0615	0.0756	822

3.1.4 MOTION RESISTENT

Code Word	Size (A WG)	Area(sq.inches)		Steel stranding	Conductor ellipse dimeters (inches)		Weig ht per 1000 ft (Lbs.)	$\mathrm{R} / 1000 \mathrm{ft}$		Rated Streng th	Ampacit y
		Al	total								
					major	minor		$\begin{aligned} & \text { DC@ } \\ & \text { 20C } \end{aligned}$	$\begin{aligned} & \text { AC@ } \\ & 75 \mathrm{C} \end{aligned}$		
Linnet/MR	795	0.6247	0.7264	7x0.136	1.302	0.879	1093	0.0213	0.0263	31500	908

3.1.5 ACSR/T-2(Aluminum Conductor Steel-Reinforced Concentric-Lay-Stranded Twisted Pair)

Code Word	Size (KCMIL)	Diameter					
(ins.)	Weight Per 1000 Feet (lbs.)	Rated Strength (lbs.)		Resistance OHMS/100 0ft.	Ampacity at 75 C		
Ostrich	600	1.114	825	24400	.0283	.0348	790
Merlin	672	1.119	730	17400	0.0255	.0315	830

3.1.6 AAC/T-2

Code							
Word	Size (KCMIL)	Diameter (ins.)	Weight Per 1000 Feet (lbs.)	Rated Strength (lbs.)	Resistance OHMS/1000ft.		Ampacity at 75 C
Tulip	672.8	1.089	631	12800	.0257	.0317	820
Daffodil	700	1.111	656	14200	.0247	.0305	840

3.2 ANALYSIS OF CONDUCTORS

According to our research on 6 types of conductors, we have found that conductor ACSR 636 Grosbeak 26/7 has the best features for re-construction of Line 98.

Comparison between All Types of Conductors

Type of Conductors	Code Word	Size (KCMIL)	Diameter (ins.)	Weight Per 1k Feet (lbs.)	Seg (ft.)	Rated Strength (lbs.)
AAC-T2	Tulip	672.8	1.089	631.0	1.0344	12800
	Daffodil	700.0	1.111	656.0	1.0112	14200
ACSR-T2	Ostrich	600.0	1.114	825.0	0.8391	24400
	Merlin	672.0	1.119	730.0	0.9403	17400
AAAC	Flint	740.8	0.990	690.8	2.8311	24400
ACSR	Kingbird	636.0	0.940	690.8	3.4683	15700
	Swift	636.0	0.930	643.0	3.4683	13690
	Rook	636.0	0.977	819.2	3.4683	22600
	Grosbeak	636.0	0.990	875.2	3.4683	25200
	Scoter	636.0	1.019	995.0	3.4683	30400
	Egret	636.0	1.019	987.0	3.4683	31500
ACSS	Partridge	266.8	0.642	366.8	3.3615	8880
	Junco	266.8	0.660	417.4	3.3615	11700

Type of Conductors	Code Word	Impedance ($\mathbf{\Omega} / \mathrm{mile}$)	Resistance OHMS/1kft.		Ampacity at $75{ }^{\circ} \mathrm{C}$
			AC at $20{ }^{\circ} \mathrm{C}$	DC at $75{ }^{\circ} \mathrm{C}$	
AAC-T2	Tulip	$0.1674+5.5238 i$	0.0257	0.0317	820
	Daffodil	$0.1576+5.3478 i$	0.0247	0.0305	840
ACSR-T2	Ostrich	$0.1663+5.4864 i$	0.0348	0.0348	790
	Merlin	$0.1542+5.2375 i$	0.0255	0.0315	830
AAAC	Flint	$0.1727+5.5968 i$	0.0272	0.0327	790
ACSR	Kingbird	$0.1732+5.5476 i$	0.0270	0.0332	773
	Swift	$0.1732+5.5477 i$	0.0271	0.0334	769
	Rook	$0.1732+5.5478 i$	0.0268	0.033	784
	Grosbeak	$0.1732+5.5479 i$	0.0267	0.0328	789
	Scoter	$0.1732+5.5480 i$	0.0256	0.0325	798
	Egret	$0.1732+5.5481 i$	0.0266	0.0326	798
ACSS	Partridge	$0.1695+5.5476 i$	0.0619	0.0761	812
	Junco	$0.1695+5.5477 i$	0.0615	0.0756	822

4. POLE ANALYSIS

4.1 POLE INTRODUCTION

There are two configurations of poles: A \& B, the structures of A and B is shown in the figures: Characteristics of A:

- Reduced line impedance
- Horizontal clearance increased

Characteristics of B:

- Higher line impedance
- Better clearance
- Ease of maintenance

4.2 POLE ANALYSIS

4.2.1 POLE CHOICE FOR ACSR 636 GROSBEAK

Poles	Span (feet) pole to pole	Sag (feet)
$1-2$	376.7	3.4177
$2-3$	283.2	1.8897
$3-4$	187	0.8239
$4-5$	$142 . .7$	0.4798
$5-6$	289.9	1.9802
$6-7$	273.1	1.7964
$7-8$	274.3	1.8095
$8-9$	261.8	1.6508
$9-10$	338.5	2.7597
$10-11$	220.9	1.1753
$11-12$	293.1	2.0691
$12-13$	285.4	1.9618
$13-14$	288.4	2.0033
$14-15$	379.4	3.4669
$15-16$	236.1	1.3426
$16-17$	299.5	2.1604
$17-18$	401.1	3.8748
$18-19$	193.3	0.8999
$19-20$	315.3	2.3944
$20-21$	291.4	2.0452

- Pole $15,16,17$ should be 10 ft longer than standard, only poles $13 \& 14$ on private land.

Pole choice: 18 Southern Yellow Pine 75 ft class 1,3 for 85 ft class 1 .

- Max Vertical Loads on cross arms is 7422.845lb-ft.

In our case, $\mathrm{OCF}=1.9$, Lphase $=4 \mathrm{ft}$

Span (feet)	Sag (feet)
376.7	2.9181
283.2	1.6493
187	0.7191
$142 . .7$	0.4188
289.9	1.7283
273.1	1.5337
274.3	1.5450
261.8	1.4095
338.5	2.3563
220.9	1.0035
293.1	1.7666
285.4	1.6750
288.4	1.7104
379.4	2.9601
236.1	1.1463
299.5	1.1463
401.1	3.3084
193.3	0.7684
315.3	2.0444
291.4	1.7462

Max Vertical Loads for distribution line on cross arms is $\mathbf{5 9 6 1 . 2 5} \mathbf{~ l b - f t}$

In our case, $\mathrm{OCF}=1.9$, Lphase $=4 \mathrm{ft}$

- Sag must not exceed 7% of the vertical clearance. thus, the distance from ground to lower point of the distribution line conductor must be at least 47.2626 ft .

IABLE 5-3
TYPICAL RIGHT-OF-WAY WIDTHS

ROW Width, ft.	Nominal Line-to-Line Voltage in kV				
	69	115	138	161	230
	$75-100$	100	$100-150$	$100-150$	$125-200$

Maximum Span as Limited by Galloping

Galloping, sometimes called dancing, is a phenomenon where the transmission line conductors vibrate with very large amplitudes. This movement of conductors may result in: (1) contact between phase conductors or between phase conductors and overhead ground wires, resulting in electrical outages and conductor burning, (2) conductor failure at support point due to the violent stress caused by galloping, (3) possible structure damage, and (4) excessive conductor sag due to the overstressing of conductors.

Galloping Considerations in the Design of Transmission Lines

In areas where galloping is either historically known to occur or is expected, designers should indicate design measures that will minimize galloping and galloping problems, especially conductor contacts. The primary tool for assuring absence of conductor contacts is to superimpose Lissajous ellipses over a scaled diagram of the structure to indicate the theoretical path of a galloping conductor. See Figures 6-3 and 6-4. To avoid contact between phase conductors or between phase conductors and overhead ground wires, none of the conductor ellipses should touch one another. However, if galloping is expected to be infrequent and of minimal severity, there may be situations where allowing ellipses to overlap may be the favored design choice when economics are considered.

FIGURE 6-4: SINGLE LOOP GALLOPING ANALYSIS

Where:
$p_{c}=$ wind load per unit length on iced conductor in $\mathrm{lbs} / \mathrm{ft}$.
Assume a 2 psf wind
$w_{c}=$ weight per unit length of conductor plus $1 / 2 \mathrm{in}$. of radial ice, lbs/ft
$L=$ span length in feet
$M=$ major axis of Lissajous ellipses in feet
$S_{i}=$ final sag of conductor with $1 / 2$ in. of radial ice, no wind, at $32^{\circ} \mathrm{F}$, in fee.
$D=$ minor axis of Lissajous ellipses in feet
$B, \emptyset=$ as defined in figure above

FIGURE 6-3: GUIDE FOR PREPARATION OF LISSAJOUS ELLIPSES

5.2 CLEARANCE

Conductor contacts in spans changing from cross arm to vertical type construction may be reduced by proper phase arrangement and by limiting span lengths. Limiting span lengths well below the average span lengths is particularly important in areas where ice and sleet conditions can be expected to occur.

FIGURE 16-1:
HORIZONTAL SEPARATION
REQUIREMENTS BETWEEN TRANSMISSION AND UNDERBUILD

FIGURE 16-2:
VERTICAL SEPARATION REQUIREMENTS AT STRUCTURE FOR UNDERBUILD

Horizontal Separation.
The horizontal separation at the support between the lowest transmission conductor(s) and the highest distribution conductor(s) or neutral should be at least 1 foot if possible as illustrated in Figures above.

5.4 CALCULATION OF SAG

Let,

- $\quad 1=$ length of the conductor span
- $\quad w=$ weight per unit length of the conductor
- $\mathrm{T}=$ tension in the conductor

Consider a point P on the conductor. Considering the lowest point O as the origin, let the coordinates of point P be x and y . Assume the curvature is so small that the curved length is equal to its horizontal projection (i.e. $\mathrm{OP}=\mathrm{x}$). The forces acting on the conductor portion OP are:

- the weight w.x acting at a distance $x / 2$ from the point O
- the tension T acting at the point O

Equating the moments of the two forces about point O , we get,

$$
\begin{aligned}
& \mathrm{T} . \mathrm{y}=\mathrm{w} \cdot \mathrm{x} * \mathrm{x} / 2 \\
& \text { or, } \mathrm{y}=\mathrm{w} \cdot \mathrm{x}^{2} / 2 \mathrm{~T}
\end{aligned}
$$

The maximum sag (dip) is represented by the value of y at either of the support points. At support point A,

$$
\begin{array}{ll}
& \mathrm{x}=1 / 2 \text { and } \mathrm{y}=\mathrm{S}(\mathrm{sag}) \\
\text { therefore, } & \operatorname{sag~} \mathrm{S}=\mathrm{w}(1 / 2)^{2} / 2 \mathrm{~T} \\
\text { therefore, } & \operatorname{sag} \mathbf{S}=\mathbf{w} \cdot \mathbf{l}^{2} / \mathbf{8 T}
\end{array}
$$

7. BUDGET

We are supposed to get a budget for our senior design projects, but unfortunately we did not have any luck for getting the price from the sellers. We are continuing working on the budget.

We are given an approximate budget limit by our client for 1.8 million dollars.

8. CONCLUSION

According to the research and the analysis above, we have designed a new route for Transmission Line 98, finished the re-build of the transmission line. Compared to our project plan, we have achieved most of the goals but the economic budget.

9. REFERENCE

1. Transmission Line Reference Book: Wind-Induced Conductor Motion,Electric Power Research Institute, Palo Alto, CA, 2006.
2. P. Hagedorn, On the computation of damped wind-excited vibrations of overhead transmission lines, Journal of Sound and Vibration. 83 (2)(1982) 253-271.
3. J-Power Systems. Gtacsr (gap-type thermal-resistant aluminum alloy steel reinforced) \& gztacsr (gaptype super-thermal-resistant aluminum alloy steel reinforced) specifications. J-Power Systems.
4. M.J. Rider, I. de J.Silva, R. Romero, A.V. Garcia, and C.A. Murari. Transmission network expansion planning in full open market considering security constraints. In Power Tech, 2005 IEEE Russia, pages $1\{6,2005\}$.
5. U.S. Department of Energy. 20\% wind energy by 2030: Increasing wind contribution to the us energy supply, July 2008.
6. Hong Fan, Haozhong Cheng, Zhiwei Ying, Fengqing Jiang, and Fangdi Shi. Transmission system expansion planning based on stochastic chance constrained programming with security constraints. In Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008. Third International Conference on, pages $909\{914,2008$.
